Poker Makeup Definition

broken image


Poker Makeup Definition, gambling casinos near surprise arizona, hard rock casino online new jersey, ameristar casino loans. Poker is any of a number of card games in which players wager over which hand is best according to that specific game's rules in ways similar to these rankings.Often using a standard deck, poker games vary in deck configuration, the number of cards in play, the number dealt face up or face down, and the number shared by all players, but all have rules which involve one or more rounds of betting. A typical tournament backing deal might be outlined as '50/50 with makeup.' What this means is that the backer, who puts up the money for a player's buyins, agrees to split 50% of the backee's tournament profits but only after previous buyins have been recouped. December 11th, 2019 11:53. Card games have always been a part of Indian culture. In fact, India has been home to many card games like bridge, rummy, poker, teen Patti etc. Most of us would have played these games once in our lifetime for su. Poker-faced - deliberately impassive in manner; 'deadpan humor'; 'his face remained expressionless as the verdict was read' deadpan, expressionless, unexpressive, impassive incommunicative, uncommunicative - not inclined to talk or give information or express opinions.

  1. Poker Makeup Definition Meaning
  2. Poker Makeup Definition Dictionary
  3. Poker Makeup Definition Best
  4. Poker Makeup Definition List

The main underpinning of poker is math – it is essential. For every decision you make, while factors such as psychology have a part to play, math is the key element.

In this lesson we're going to give an overview of probability and how it relates to poker. This will include the probability of being dealt certain hands and how often they're likely to win. We'll also cover how to calculating your odds and outs, in addition to introducing you to the concept of pot odds. And finally we'll take a look at how an understanding of the math will help you to remain emotional stable at the poker table and why you should focus on decisions, not results.

What is Probability?

Probability is the branch of mathematics that deals with the likelihood that one outcome or another will occur. For instance, a coin flip has two possible outcomes: heads or tails. The probability that a flipped coin will land heads is 50% (one outcome out of the two); the same goes for tails.

Probability and Cards

Poker Makeup Definition Meaning

When dealing with a deck of cards the number of possible outcomes is clearly much greater than the coin example. Each poker deck has fifty-two cards, each designated by one of four suits (clubs, diamonds, hearts and spades) and one of thirteen ranks (the numbers two through ten, Jack, Queen, King, and Ace). Therefore, the odds of getting any Ace as your first card are 1 in 13 (7.7%), while the odds of getting any spade as your first card are 1 in 4 (25%).

Unlike coins, cards are said to have 'memory': every card dealt changes the makeup of the deck. For example, if you receive an Ace as your first card, only three other Aces are left among the remaining fifty-one cards. Therefore, the odds of receiving another Ace are 3 in 51 (5.9%), much less than the odds were before you received the first Ace.

Want to see how poker math intertwines with psychology and strategy to give you a MASSIVE EDGE at the tables? Check out CORE and learn poker in the quickest and most systematic way:

Pre-flop Probabilities: Pocket Pairs

In order to find the odds of getting dealt a pair of Aces, we multiply the probabilities of receiving each card:

(4/52) x (3/51) = (12/2652) = (1/221) ≈ 0.45%.

To put this in perspective, if you're playing poker at your local casino and are dealt 30 hands per hour, you can expect to receive pocket Aces an average of once every 7.5 hours.

Poker Makeup Definition Dictionary

The odds of receiving any of the thirteen possible pocket pairs (twos up to Aces) is:

(13/221) = (1/17) ≈ 5.9%.

In contrast, you can expect to receive any pocket pair once every 35 minutes on average.

Pre-Flop Probabilities: Hand vs. Hand

Players don't play poker in a vacuum; each player's hand must measure up against his opponent's, especially if a player goes all-in before the flop. West covina ca map.

Here are some sample probabilities for most pre-flop situations:

Post-Flop Probabilities: Improving Your Hand

Now let's look at the chances of certain events occurring when playing certain starting hands. The following table lists some interesting and valuable hold'em math:

Many beginners to poker overvalue certain starting hands, such as suited cards. As you can see, suited cards don't make flushes very often. Likewise, pairs only make a set on the flop 12% of the time, which is why small pairs are not always profitable.

PDF Chart

We have created a poker math and probability PDF chart (link opens in a new window) which lists a variety of probabilities and odds for many of the common events in Texas hold ‘em. This chart includes the two tables above in addition to various starting hand probabilities and common pre-flop match-ups. You'll need to have Adobe Acrobat installed to be able to view the chart, but this is freely installed on most computers by default. We recommend you print the chart and use it as a source of reference.

Odds and Outs

If you do see a flop, you will also need to know what the odds are of either you or your opponent improving a hand. In poker terminology, an 'out' is any card that will improve a player's hand after the flop.

One common occurrence is when a player holds two suited cards and two cards of the same suit appear on the flop. The player has four cards to a flush and needs one of the remaining nine cards of that suit to complete the hand. In the case of a 'four-flush', the player has nine 'outs' to make his flush.

A useful shortcut to calculating the odds of completing a hand from a number of outs is the 'rule of four and two'. The player counts the number of cards that will improve his hand, and then multiplies that number by four to calculate his probability of catching that card on either the turn or the river. If the player misses his draw on the turn, he multiplies his outs by two to find his probability of filling his hand on the river.

In the example of the four-flush, the player's probability of filling the flush is approximately 36% after the flop (9 outs x 4) and 18% after the turn (9 outs x 2).

Pot Odds

Another important concept in calculating odds and probabilities is pot odds. Pot odds are the proportion of the next bet in relation to the size of the pot.

For instance, if the pot is $90 and the player must call a $10 bet to continue playing the hand, he is getting 9 to 1 (90 to 10) pot odds. If he calls, the new pot is now $100 and his $10 call makes up 10% of the new pot.

Experienced players compare the pot odds to the odds of improving their hand. If the pot odds are higher than the odds of improving the hand, the expert player will call the bet; if not, the player will fold. This calculation ties into the concept of expected value, which we will explore in a later lesson.

Bad Beats

A 'bad beat' happens when a player completes a hand that started out with a very low probability of success. Experts in probability understand the idea that, just because an event is highly unlikely, the low likelihood does not make it completely impossible.

A measure of a player's experience and maturity is how he handles bad beats. In fact, many experienced poker players subscribe to the idea that bad beats are the reason that many inferior players stay in the game. Bad poker players often mistake their good fortune for skill and continue to make the same mistakes, which the more capable players use against them.

Decisions, Not Results

One of the most important reasons that novice players should understand how probability functions at the poker table is so that they can make the best decisions during a hand. While fluctuations in probability (luck) will happen from hand to hand, the best poker players understand that skill, discipline and patience are the keys to success at the tables.

A big part of strong decision making is understanding how often you should be betting, raising, and applying pressure.
The good news is that there is a simple system, with powerful shortcuts & rules, that you can begin using this week. Rooted in GTO, but simplified so that you can implement it at the tables, The One Percent gives you the ultimate gameplan.

This 7+ hour course gives you applicable rules for continuation betting, barreling, raising, and easy ratios so that you ALWAYS have the right number of bluffing combos. Take the guesswork out of your strategy, and begin playing like the top-1%.

Conclusion

A strong knowledge of poker math and probabilities will help you adjust your strategies and tactics during the game, as well as giving you reasonable expectations of potential outcomes and the emotional stability to keep playing intelligent, aggressive poker.

Remember that the foundation upon which to build an imposing knowledge of hold'em starts and ends with the math. I'll end this lesson by simply saying…. the math is essential.

Related Lessons

By Gerald Hanks

Gerald Hanks is from Houston Texas, and has been playing poker since 2002. He has played cash games and no-limit hold'em tournaments at live venues all over the United States.

Related Lessons

Related Lessons

Share:

Last updated: January 1, 2018

I recently took a Hackerrank challenge for a job application that involved poker. I'm not a poker player, so I had a brief moment of panic as I read over the problem the description. In this article I want to do some reflection on how I approached the problem.

The hackerrank question asked me to write a program that would determine the best poker hand possible in five-card draw poker. We are given 10 cards, the first 5 are the current hand, and the second 5 are the next five cards in the deck. We assume that we can see the next five cards (they are not hidden). We want to exchange any n number of cards (where n <= 5) in our hand for the next n cards in the deck. For example, we can take out any combination of 2 cards from the hand we are given, but we must replace these two cards with the next two cards from the deck (we can't pick any two cards from the deck).

Makeup

Suit and value make up the value of playing cards. For example, you can have a 3 of clubs. 3 is the value, clubs is the suit. We can represent this as 3C.

Suits

Clubs CSpades SHeart HDiamonds D

Value (Rank)

2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace

Hands

Here are the hands of poker

  1. Royal flush (the problem didn't ask me to consider Royal Flush)

    A, K, Q, J, 10, all the same suit.

  2. Straight flush

    Five cards in a sequence, all in the same suit. Ace can either come before 2 or come after King.

  3. Four of a kind

    All four cards of the same rank.

  4. Full house

    Three of a kind with a pair.

  5. Flush

    Any five cards of the same suit, but not in a sequence.

  6. Straight

    Five cards in a sequence, but not of the same suit.

  7. Three of a kind

    Three cards of the same rank.

  8. Two pair

    Two different pairs.

  9. Pair

    Two cards of the same rank.

  10. High Card

    When you haven't made any of the hands above, the highest card plays.In the example below, the jack plays as the highest card.

Evaluating a hand of cards

A hand is five cards. The first thing I did was write out functions to evaluate if a group of 5 cards satisfies the conditions of one of the ten hands.

Here's a sample hand:

To write functions, I reached for using 2 important python features: set and defaultdict.

Poker Makeup Definition

Here's an example of a simple function to detect a flush, a hand with cards of all the same suit:

Checking a flush

This function creates a list of the suits in our hand, and then counts the unique elements in that list by making it a set. If the length of the set is 1, then all the cards in the hand must be of the same suit.

But wait, what if we have a straight flush? Also, a hand that satisfies a flush could also be described as a two pair hand. The problem asked me to find the highest possible hand for a given set of cards, so I tried to keep things simple by writing a check_hand() function that checks each hand starting from straight flush down to high card. As soon as a condition for a hand was satisfied, I returned a number that corresponded to the strength of the hand (1 for high card up to 10 for straight flush). The problem didn't include Royal flush, so I will not include that here.

Here's the check_hand function:

This function starts checking the most valuable hands. After it checks the second to lowest hand (pair), it returns a value of 1. This value of 1 corresponds to the 'highest card' hand. Since I'm not comparing the relative value of hands, it doesn't matter what the highest card is, so the number just represents the type of hand that is the strongest.

Other hands

Here are the all of the functions I used to detect hands:

Poker Makeup Definition Best

defaultdict is a great built-in that is good to use when you don't know what elements will be in your dictionary, but you know what the initial values of any key that could be added should be. We don't need it here, but the alternative would be to write a very long dictionary where keys are the possible card values and the values of each key is 0.

Poker Makeup Definition List

It would certainly be cleaner and more efficient to write out the above functions into one large function, but I wanted to keep things simple as I was under time constraints.

The next step in the problem is to determine the best possible hand we can get given the hand we are dealt and the 5 cards on top of the deck. I decided to first solve this problem with brute force. Here was my logic for this part: use itertools to get all combinations of groups of 0, 1, 2, 3, 4 and 5 cards from my hand and add the first 5 - n cards from the deck so we get a five card deck. For each combination of cards we can run check_hand() and keep track of the highest rank hand, and then return that hand as the best hand. Here's the code I wrote for this part of the problem:

Lastly, I need to check each hand and print out the best hand possible. Here's the loop I wrote to do this:

This will accept one round of cards per line:

and it will output the following:

This was an interesting problem to deal with as the solution contained several parts that worked together. While solving the problem I aimed worked through to the end leaving some parts to come back to that I felt confident in solving. Instead of writing each function to check differnt hands at the beginning, I filled most of these functions with pass and moved on to write the next part that involves checking each different combination of cards. Recently having worked through python's itertools exercises on Hackerrank, the combinations functions was fresh in my mind.

While I was able to arrive at a solution that satisfied the test cases, I did not have time to think about the efficiency or Big O analysis of the problem.

There is obviously some refactoring that I could do to make things cleaner. With more time I would take an object oriented approach by making classes for cards and hands, and adding class methods to evaluate the hands.

For each round, we have to run check_hand() on each hand combination. Let's think about how many hands we have to evaluate:

We have to consider combinations of cards formed by taking out groups of 0, 1, 2, 3, 4 and 5 cards and adding the next number of cards in the deck that bring the total card count to 5, which means we have to do 5C0 + 5C1 + 5C2 + 5C3 + 5C4 + 5C5 calls to check_hand(). So the sum of total calls is 1 + 5 + 10 + 10 + 5 + 1 = 32.

For each of these 32 calls that happen when we run play(), check_hands() runs through each of the check_ functions starting with the highest value hand. As soon as it finds a 'match', check_hands() returns a number value (hand_value) corresponding to straight flush, four of a kind, etc. This value is then compared with the highest value that has been previously found (best_hand) and replaces that value if the current hand's hand rank has a higher value.

I'm not sure if there is faster way to find the best hand than the brute force method I implemented.

Poker makeup definition best

Suit and value make up the value of playing cards. For example, you can have a 3 of clubs. 3 is the value, clubs is the suit. We can represent this as 3C.

Suits

Clubs CSpades SHeart HDiamonds D

Value (Rank)

2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace

Hands

Here are the hands of poker

  1. Royal flush (the problem didn't ask me to consider Royal Flush)

    A, K, Q, J, 10, all the same suit.

  2. Straight flush

    Five cards in a sequence, all in the same suit. Ace can either come before 2 or come after King.

  3. Four of a kind

    All four cards of the same rank.

  4. Full house

    Three of a kind with a pair.

  5. Flush

    Any five cards of the same suit, but not in a sequence.

  6. Straight

    Five cards in a sequence, but not of the same suit.

  7. Three of a kind

    Three cards of the same rank.

  8. Two pair

    Two different pairs.

  9. Pair

    Two cards of the same rank.

  10. High Card

    When you haven't made any of the hands above, the highest card plays.In the example below, the jack plays as the highest card.

Evaluating a hand of cards

A hand is five cards. The first thing I did was write out functions to evaluate if a group of 5 cards satisfies the conditions of one of the ten hands.

Here's a sample hand:

To write functions, I reached for using 2 important python features: set and defaultdict.

Here's an example of a simple function to detect a flush, a hand with cards of all the same suit:

Checking a flush

This function creates a list of the suits in our hand, and then counts the unique elements in that list by making it a set. If the length of the set is 1, then all the cards in the hand must be of the same suit.

But wait, what if we have a straight flush? Also, a hand that satisfies a flush could also be described as a two pair hand. The problem asked me to find the highest possible hand for a given set of cards, so I tried to keep things simple by writing a check_hand() function that checks each hand starting from straight flush down to high card. As soon as a condition for a hand was satisfied, I returned a number that corresponded to the strength of the hand (1 for high card up to 10 for straight flush). The problem didn't include Royal flush, so I will not include that here.

Here's the check_hand function:

This function starts checking the most valuable hands. After it checks the second to lowest hand (pair), it returns a value of 1. This value of 1 corresponds to the 'highest card' hand. Since I'm not comparing the relative value of hands, it doesn't matter what the highest card is, so the number just represents the type of hand that is the strongest.

Other hands

Here are the all of the functions I used to detect hands:

Poker Makeup Definition Best

defaultdict is a great built-in that is good to use when you don't know what elements will be in your dictionary, but you know what the initial values of any key that could be added should be. We don't need it here, but the alternative would be to write a very long dictionary where keys are the possible card values and the values of each key is 0.

Poker Makeup Definition List

It would certainly be cleaner and more efficient to write out the above functions into one large function, but I wanted to keep things simple as I was under time constraints.

The next step in the problem is to determine the best possible hand we can get given the hand we are dealt and the 5 cards on top of the deck. I decided to first solve this problem with brute force. Here was my logic for this part: use itertools to get all combinations of groups of 0, 1, 2, 3, 4 and 5 cards from my hand and add the first 5 - n cards from the deck so we get a five card deck. For each combination of cards we can run check_hand() and keep track of the highest rank hand, and then return that hand as the best hand. Here's the code I wrote for this part of the problem:

Lastly, I need to check each hand and print out the best hand possible. Here's the loop I wrote to do this:

This will accept one round of cards per line:

and it will output the following:

This was an interesting problem to deal with as the solution contained several parts that worked together. While solving the problem I aimed worked through to the end leaving some parts to come back to that I felt confident in solving. Instead of writing each function to check differnt hands at the beginning, I filled most of these functions with pass and moved on to write the next part that involves checking each different combination of cards. Recently having worked through python's itertools exercises on Hackerrank, the combinations functions was fresh in my mind.

While I was able to arrive at a solution that satisfied the test cases, I did not have time to think about the efficiency or Big O analysis of the problem.

There is obviously some refactoring that I could do to make things cleaner. With more time I would take an object oriented approach by making classes for cards and hands, and adding class methods to evaluate the hands.

For each round, we have to run check_hand() on each hand combination. Let's think about how many hands we have to evaluate:

We have to consider combinations of cards formed by taking out groups of 0, 1, 2, 3, 4 and 5 cards and adding the next number of cards in the deck that bring the total card count to 5, which means we have to do 5C0 + 5C1 + 5C2 + 5C3 + 5C4 + 5C5 calls to check_hand(). So the sum of total calls is 1 + 5 + 10 + 10 + 5 + 1 = 32.

For each of these 32 calls that happen when we run play(), check_hands() runs through each of the check_ functions starting with the highest value hand. As soon as it finds a 'match', check_hands() returns a number value (hand_value) corresponding to straight flush, four of a kind, etc. This value is then compared with the highest value that has been previously found (best_hand) and replaces that value if the current hand's hand rank has a higher value.

I'm not sure if there is faster way to find the best hand than the brute force method I implemented.

🗣




broken image